This article was downloaded by: [Tomsk State University of Control Systems and Radio]

On: 20 February 2013, At: 13:13

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH,

UK



# Molecular Crystals and Liquid Crystals

Publication details, including instructions for authors and subscription information: <a href="http://www.tandfonline.com/loi/gmcl16">http://www.tandfonline.com/loi/gmcl16</a>

# Molecular Aspect and Polymorphism in Polar Rod-Like Mesogens

Nguyen Huu Tinh <sup>a</sup> , H. Gasparoux <sup>a</sup> , J. Malthete <sup>b</sup> & C. Destrade <sup>a</sup>

<sup>a</sup> Centre de Recherche Paul Pascal, Domaine Universitaire, 33405, Talence Cedex, France

b Laboratoire de Chimie des Interactions Molé;culaires, Collè;ge de France, 75231, Paris, Cédex, France

Version of record first published: 20 Apr 2011.

To cite this article: Nguyen Huu Tinh , H. Gasparoux , J. Malthete & C. Destrade (1984): Molecular Aspect and Polymorphism in Polar Rod-Like Mesogens, Molecular Crystals and Liquid Crystals, 114:1-3, 19-41

To link to this article: <a href="http://dx.doi.org/10.1080/00268948408071697">http://dx.doi.org/10.1080/00268948408071697</a>

#### PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <a href="http://www.tandfonline.com/page/terms-and-conditions">http://www.tandfonline.com/page/terms-and-conditions</a>

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to

date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Mol. Cryst. Liq. Cryst., 1984, Vol. 114, pp. 19-41 0026-8941/84/1143-0019/\$25.00/0 © 1984 Gordon and Breach, Science Publishers, Inc. and OPA Ltd. Printed in the United States of America

MOLECULAR ASPECT AND POLYMORPHISM IN POLAR ROD-LIKE MESOGENS

NGUYEN HUU TINH, H. GASPAROUX, J. MALTHETE\*, C. DESTRADE

Centre de Recherche Paul Pascal, Domaine Universitaire 33405 Talence Cédex, France

\*Laboratoire de Chimie des Interactions Moléculaires, Collège de France, 75231 Paris Cédex, France

Abstract Strongly polar molecules with the general formula:

 $R \stackrel{\frown}{\longleftarrow} X \stackrel{\frown}{\longleftarrow} Y \stackrel{\frown}{\longleftarrow} {CN \choose NO_2}$ 

show a great variety of interesting polymorphism such as reentrant phases and some new smectic phases. The importance of the relative longitudinal dipolar moment of the cyano or nitro group and of the different X and Y linkages has been clearly underlined. For this purpose four families of polar mesogens belonging to the above structure with X, Y = -COO -, -CH = N -, -OCO -, -N = CH - have been synthesized. Some interesting results are given:

- Reentrant sequences :
  - . K S<sub>A</sub> N<sub>re</sub> S<sub>A</sub> N I
    . K N<sub>re</sub> S<sub>C</sub> S<sub>A</sub> N I
    . K S<sub>C</sub> N<sub>re</sub> S<sub>A</sub> N I
    . K S<sub>A</sub> N<sub>re</sub> S<sub>C</sub> S<sub>A</sub> N
- Transition  $S_C S_C$ 
  - . K  $s_{C_2}$   $s_{C}$   $s_{A}$  N I . K  $s_{C_2}$   $s_{\tilde{C}}$   $s_{C}$   $s_{C}$   $s_{A}$  N I
- Existence of different smectic A and C phases :
  - $s_{A_2}$   $s_{A_1}$   $s_{A_d}$
  - .  $s_{c_2}$   $s_{c_1}$   $s_{c_d}$

#### INTRODUCTION

In some previously reported papers<sup>1,2</sup> we have shown that the cyano compounds with three benzene rings belonging to the structure:

$$R \leftarrow O - COO \leftarrow O - X \leftarrow O - CN$$

constitute the optimal condition for the formation of reentrant phases at atmospheric pressure. Moreover it has been already shown that the NO<sub>2</sub> terminal group may also lead to nematic reentrance and to new smectic phase made of ribbons  $^3$  S $^{\circ}_{\text{C}}$  with the compound :

A systematic study of the influence of :

- the polar terminal group (- CN or NO<sub>2</sub>)
- the relative longitudinal dipolar moment of the central groups (X and Y)

on the reentrant phenomenon and the new smectic modifications was performed. For this purpose the four families of polar mesogens with three benzene rings belonging to the structures 1, 2, 3 and 4 have been synthesized:

## RESULTS AND DISCUSSION

All the compounds were prepared according to well-known methods. They were purified by repeated recrystallization. Phase transitions were studied both by polarizing microscopy equipped with a Mettler FP5 heating stage and Differential Scanning calorimetry (Dupont 990).

Following the longitudinal dipolar moment sense of X and Y, four families of compounds can be defined:

l. FAMILY  $\frac{1}{2}$ : The longitudinal dipolar moments of X, Y and CN or NO<sub>2</sub> are in the same sense. The four corresponding series are :

1A CN : 
$$R \rightarrow O \rightarrow COO \rightarrow O \rightarrow CH \stackrel{?}{=} N \rightarrow O \rightarrow CN$$

1A NO<sub>2</sub> :  $R \rightarrow O \rightarrow COO \rightarrow O \rightarrow CH \stackrel{?}{=} N \rightarrow O \rightarrow NO_2$ 

1B CN :  $R \rightarrow O \rightarrow CH \stackrel{?}{=} N \rightarrow O \rightarrow COO \rightarrow O \rightarrow NO_2$ 

1B NO<sub>2</sub> :  $R \rightarrow O \rightarrow CH \stackrel{?}{=} N \rightarrow O \rightarrow COO \rightarrow O \rightarrow NO_2$ 

\* Series 1A  $\rm CN^4$ , 5 (Table I). In this series, three derivatives with R =  $\rm C_8H_{17}O_{-}$ ,  $\rm C_9H_{19}O_{-}$  and  $\rm C_{10}H_{21}O_{-}$  exhibit a reentrant nematic phase. The latter presents for the first time the interesting sequence:

At first, these very metastable  $S_C$  and  $N_{re}$  phases could not be identified by miscibility studies. Recently they have been proved to be miscible with those of 4-decyloxycinnamoy-loxybenzylidene 4'-cyanoaniline<sup>6</sup>,  $\frac{5}{5}$  (Fig. 1). In order to prove definitively these identifications, X-ray investigations were performed using an equimolar mixture of the two decyloxy derivatives in which the  $S_C$  phase is stable and the reentrant nematic phase could exist still 50°C. This study proves that the  $S_A$  and  $S_C$  are partially bilayered smectic phases<sup>6</sup>.

10

Transition temperatures of compounds of IA CN CN4,5 COO - $O \rightarrow CH = N$ SA sc SA Ι  $N_{re}$ n 299 137.5 (.101)5 122 (.102)280 115 91) 274 115 70) 264 153 . 198 255 108 40) 92) 96 (. . 228 251

The meanings of the signs used in this table and in the following are:

(.79)

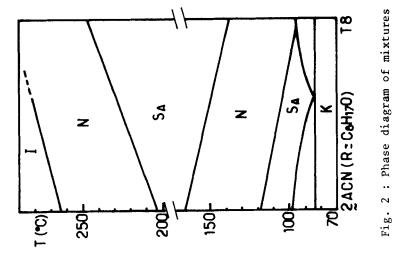
. 232

242

66)

K : crystalline phase ; N : nematic phase S : smectic phases A, C ..., smectic phases  $S_A$ ,  $S_C$   $N_{\rm re}$  : reentrant nematic phase; I : isotropic phase

. : the phase exists ; - : the phase does not exist


( ): monotropic phase

100

The temperatures are given in Celsius degrees.

The metastable  $S_A$  phase observed for short chains is probably  $S_{A_1}$  because the ratio  $T_{NA}/T_{NI}$  is lower to Mc Millan parameter 0.87 ( $T_{NA}$ ,  $T_{NI}$  are respectively the temperature in Kelvin of the smectic A - nematic transition at the highest temperature and the nematic - isotrope transition). From the octyloxy derivative the  $S_A$  phase is partially bilayered ( $S_{A_d}$ ).

\* Series 1B CN (Table II). The first seven homologues only show nematic phases. In the octyloxy and nonyloxy derivatives a reentrant nematic and  $S_{\mbox{A}_{\mbox{d}}}$  phases appear. The decyloxy derivative does not exhibits a  $N_{\mbox{re}}$  phase but it presents a



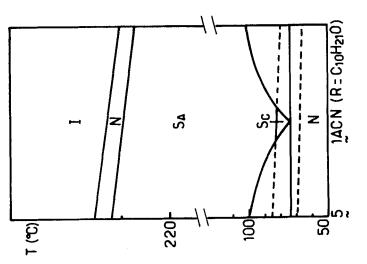



Fig. 1: Phase diagram of mixtures

| TA | BLE | II T         | ransi             | tion           | temp | erat | ure <u>s</u> | of co        | mpoun | ds | of           | l B | CN |
|----|-----|--------------|-------------------|----------------|------|------|--------------|--------------|-------|----|--------------|-----|----|
|    |     | $C_n^H_{2n}$ | <sub>Fì</sub> o ≺ | $( ^{\circ} )$ | ~ CH | = N  | · { o        | <b>)</b> - c | 00 -{ | 0  | <b>)</b> - ' | CN  |    |
| n  | Κ   |              | N <sub>re</sub>   |                | sc   |      | $s_A$        |              | N     |    |              |     | I  |
| 1  | -   | 168          | -                 |                | _    |      | -            |              | •     | >  | 290          |     | •  |
| 2  |     | 161          | -                 |                | -    |      | -            |              | •     | >  | 290          |     |    |
| 3  | -   | 139          | _                 |                | -    |      | -            |              | •     | >  | 290          |     |    |
| 4  |     | 116          | -                 |                | -    |      | -            |              |       |    | 285          |     | •  |
| 5  |     | 117          | -                 |                | -    |      | -            |              |       |    | 277          |     |    |
| 6  | -   | 116          | -                 |                | -    |      | -            |              |       |    | 270          |     |    |
| 7  |     | 119          | -                 |                | -    |      | _            |              |       |    | 257          |     |    |
| 8  |     | 113          |                   | 138            | -    |      |              | 208          |       |    | 254          |     |    |
| 9  | -   | 99           | (.                | 89)            | (.   | 84)  |              | 220          | -     |    | 246          |     |    |
| 10 |     | 101          | -                 |                | _    |      |              | 235          | •     |    | 242          |     |    |
| 11 |     | 99           | -                 |                | -    |      |              | 234          |       |    | 237          |     |    |
| 12 |     | 100          | _                 |                | -    |      |              | 234          | _     |    |              |     |    |

metastable S<sub>C</sub> phase.

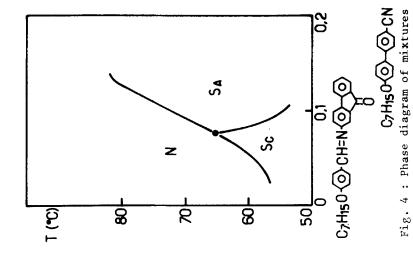
- \* Series  $\stackrel{1A}{\sim}$  NO $_2^{7}$  (Table III). All the four compounds present smectic A and nematic phases. The N<sub>re</sub> is not observed in this series.
- \* Series 18 NO $_2$  (Table IV). Two first compounds exhibit smectic A and nematic phases while the nonyloxy and decyloxy derivatives only present smectic A phases. In these two last series, the heptyloxy derivative only displays the high temperature nematic and  $S_{Ad}$  phases. The superior homologue octyloxy does not either exhibit a reentrant nematic phase. So it is certain that a  $N_{re}$  phase cannot be observed in the series  $\frac{1}{2}$  NO $_2$  because an increasing of the chain length is known to destabilize the  $S_{A1}$  and  $N_{re}$  phases  $\frac{1}{2}$ .

Conclusion for the family 1. Only the cyano end group gives the reentrant sequences I N  $S_A$   $N_{re}$  and I N  $S_A$   $S_C$   $N_{re}$ .

2. FAMILY  $\overset{\sim}{2}$ : The longitudinal dipolar moments of X and CN or NO $_2$  are in the same sense while that of Y is antiparallel. We have also four series:

2A CN : R 
$$\longrightarrow$$
 COO  $\longrightarrow$  O  $\longrightarrow$  N  $\stackrel{\leftarrow}{=}$  CH  $\longrightarrow$  O  $\longrightarrow$  CN  $\stackrel{\leftarrow}{=}$  CH  $\longrightarrow$  O  $\longrightarrow$  NO  $\stackrel{\leftarrow}{=}$  CH  $\longrightarrow$  O  $\longrightarrow$  NO  $\stackrel{\leftarrow}{=}$  CH  $\longrightarrow$  O  $\longrightarrow$  NO  $\stackrel{\leftarrow}{=}$  CH  $\stackrel{\leftarrow}{=}$  N  $\longrightarrow$  O  $\longrightarrow$  OCO  $\longrightarrow$  NO  $\stackrel{\leftarrow}{=}$  NO  $\longrightarrow$  CH  $\stackrel{\rightleftharpoons}{=}$  N  $\longrightarrow$  O  $\longrightarrow$  OCO  $\longrightarrow$  NO  $\stackrel{\leftarrow}{=}$  NO  $\longrightarrow$  NO

\* Series 2A CN (Table V). Twenty compounds have been synthesized with R =  $C_n H_{2n+1}$  (n = 3  $\rightarrow$  10) and  $C_n H_{2n+1} 0$ - (n = 1  $\rightarrow$  12). Up to n = 3 in these two cases, each compound has only a nematic phase. The  $S_A$  phase appears with n = 4. This  $S_A$  phase with short chain is probably a monolayered one ( $S_{A_1}$ ). It presents a temperature of maximum stability with n = 6 deri-


| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                        | TABLE                                       | V   | / \   |    | on tem | 1     |     | /    | ١, |          |   | un | ds 2/ | A CN |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----|-------|----|--------|-------|-----|------|----|----------|---|----|-------|------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                         | _                                           | R → | ( ) - |    | \      | /     |     | _    | /  | ,        |   |    |       |      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                         | К                                           | K   |       | Sc | S      | 4     | Nre | •    | Sp | <b>I</b> | N |    |       | I    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                         | <sup>C</sup> 3 <sup>H</sup> 7               | •   | 145   | -  | -      |       | -   |      | -  |          | - | >  | 280   | •    |
| $^{6}_{6}H_{13}$                                                                                                                                                                                                                                                             | С <sub>4</sub> Н <sub>9</sub>               |     | 127   | -  | (.     | 96)   | -   |      |    |          |   | >  | 280   |      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                         | C <sub>5</sub> H <sub>11</sub>              |     | 106   | -  | (.     | 98)   | -   |      | -  |          |   |    | 274   |      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                         | 6 <sub>6</sub> <sup>H</sup> 13              | -   | 94.5  | -  | -      | 106.5 | -   |      | -  |          |   |    | 262   |      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                        | <sup>C</sup> 7 <sup>H</sup> 15              | •   | 120   | -  | (.     | 95)   | -   |      | -  |          |   |    | 258   | •    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                         | <sup>C</sup> 8 <sup>H</sup> 17              |     | 104   | _  | (.     | 77.6  | )(. | 84)  |    | 196      | - |    | 246   |      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                         | <sup>С</sup> 9 <sup>Н</sup> 19              |     | 106   | -  | -      |       | -   |      |    | 220      |   |    | 241   | -    |
| $C_2H_5O$ • 134 • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                        | C <sub>10</sub> H <sub>21</sub>             | -   | 99    | -  | _      |       | -   |      | •  | 227      |   |    | 235   |      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                         | CH <sub>3</sub> O                           | •   | 160   | -  | -      |       | -   |      | -  |          |   | >  | 290   | -    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                         | с <sub>2</sub> н <sub>5</sub> о             |     | 134   | -  | _      |       | -   |      | -  |          |   | >  | 290   | -    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                         | <sup>С</sup> 3 <sup>Н</sup> 7 <sup>О</sup>  |     | 130   | _  | _      |       | -   |      | -  |          |   | >  | 290   | -    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                         | с <sub>4</sub> н <sub>9</sub> о             | -   | 117   | -  | (.     | 87)   |     |      | -  |          |   | >  | 290   | -    |
| $C_{7}H_{15}O$ . $104$ $134$ $271$ . $271$ . $C_{8}H_{17}O$ . $98$ $119$ . $166$ . $204$ . $264$ . $C_{9}H_{19}O$ . $113$ - (. $100$ ) (. $168$ ) . $244$ . $258$ . $C_{10}H_{21}O$ . $104$ - (. $79$ ) (. $94$ ) . $245$ . $254$ . $254$ . $C_{11}H_{23}O$ . $88$ (. $79$ ) | с <sub>5</sub> н <sub>11</sub> 0            |     | 101   | -  | -      | 126   | -   |      | -  |          |   |    | 289   |      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                         | <sup>C</sup> 6 <sup>H</sup> 13 <sup>O</sup> |     | 104   | -  | -      | 144   | -   |      | -  |          |   |    | 283   | -    |
| $C_{9}H_{19}O$ • 113 - (• 100) (• 168) • 244 • 258 •<br>$C_{10}H_{21}O$ • 104 - (• 79) (• 94) • 245 • 254 •<br>$C_{11}H_{23}O$ • 88 (• 79) • 247 • 249 •                                                                                                                     | с <sub>7</sub> н <sub>15</sub> 0            | -   | 104   | -  | •      | 134   | -   |      | -  |          | - |    | 271   | -    |
| $C_{10}H_{21}O$ . 104 - (. 79) (. 94) . 245 . 254 . $C_{11}H_{23}O$ . 88 (. 79) 247 . 249 .                                                                                                                                                                                  | <sup>C</sup> 8 <sup>H</sup> 17 <sup>O</sup> | •   | 98    | -  | •      | 119   | •   | 166  | -  | 204      |   |    | 264   |      |
| $c_{11}H_{23}O$ . 88 (.79)247 . 249 .                                                                                                                                                                                                                                        | с <sub>9</sub> н <sub>19</sub> 0            |     | 113   | -  | ( .    | 100)  | (.  | 108) |    | 244      |   |    | 258   | -    |
| 11 25                                                                                                                                                                                                                                                                        | C <sub>10</sub> H <sub>21</sub> O           | •   | 104   | -  | (.     | 79)   | (.  | 94)  |    | 245      |   |    | 254   | -    |
| C <sub>12</sub> H <sub>25</sub> O . 91 (.70)247 .                                                                                                                                                                                                                            | C <sub>11</sub> H <sub>23</sub> O           |     | 88    | (. | 79) -  |       | -   |      | -  | 247      |   |    | 249   |      |
|                                                                                                                                                                                                                                                                              | C <sub>12</sub> H <sub>25</sub> O           | •   | 91    | (. | 70) ~  |       | -   |      |    | 247      | - |    |       |      |

vative (for  $C_nH_{2n+1}$  and  $C_nH_{2n+1}0$ ). The octyloxy derivative exhibits enantiotropic reentrant N and  $S_A$  phases while the octyl, the nonyloxy and the decyloxy derivatives present monotropic reentrant N and  $S_A$  phases.

The N S $_{\rm A}$  N S $_{\rm A}$  sequence of the four compounds has been characterized first by optical textures and then checked by a contact method with a well known compound T $_{\rm 8}{}^{\rm 8}$  (Fig. 2).

The diagram of state of binary system between the decyloxy derivative and the 4(4"-decyloxybenzoyloxy)benzylidene-4'-cyanoaniline has been studied by means of the contact method and by the investigations of certain singular concentrations (Fig. 3). From this figure, we can report two important results:

- First, a new phase sequence with decreasing temperature is observed: N  $S_A$   $S_C$  N  $S_A$ . For example, with 68.7 mol % of decyloxy derivative, the transition temperatures are:
  - K 98.5 ( $S_A$  61.2) (N 86.5) ( $S_C$  87.5)  $S_A$  242.5 N 251 I
- Second, we stress the existence of a rather unusual  $N_{re}$  A-C point involving the reentrant nematic phase. This fact changes part of the topology of this point especially attractive because of its tricritical character. Unlike the "common" case (see Figures 4 and 5) $^{9}$ ,  $^{10}$  in which the sequence  $N \rightarrow S_A \rightarrow S_C$  is observed when one turns clock wise around the triple point, now the different sequence  $S_A \rightarrow S_C \rightarrow N_{re}$  is obtained. Moreover, in the previously studied systems, as depicted in Figures 4 and 5, the entropy of the  $N-S_C$  transition has been shown to decrease rapidly along the line of transition and to vanish eventually at the N-A-C point. This behavior as well as the actual shapes of the curves in the vicinity of the point of the Figure 3 have been checked  $^{11}$ . We must point out that even



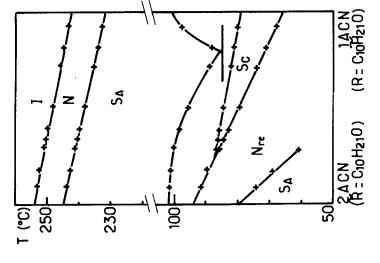
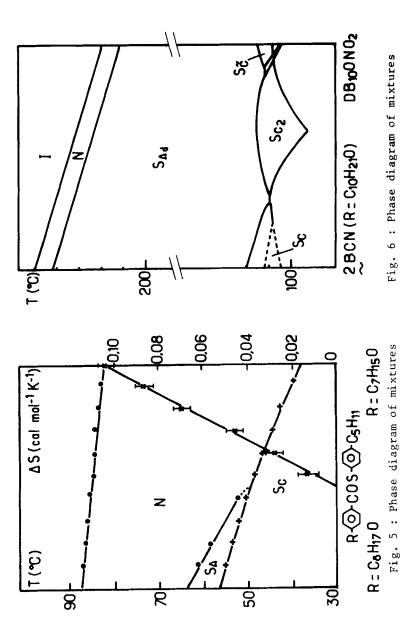




Fig. 3: Phase diagram of mixtures



in pure compound IA CN (R =  $C_{10}H_{21}O$ -) the entropy of the  $S_C - N_{re}$  is very weak =  $3.3 \times 10^{-2}$  cal.mol<sup>-1</sup>.K<sup>-1</sup>.

\* Series 2B CN (Table VI). Ten compounds of this series have been prepared with R =  $C_n H_{2n+1} O$  (n = 4  $\rightarrow$  13). The derivatives with short chain (n = 4  $\rightarrow$  8) exhibit  $S_{A_1}$  and N phases. The nonyloxy derivative presents enantiotropic reentrant  $S_A$  and N phases. The more interesting feature is obtained with the decyloxy derivative which exhibits directly transition  $S_{C_2} - S_C$  with the sequence  $S_{C_2} - S_C$  with the sequence  $S_{C_3} - S_C$  with  $S_{C_3} - S_C$ 

The smectic  $S_{C_2}$  phases of the four latest compounds of the series appear entirely miscible among themselves but not miscible with the high temperature  $S_C$  phase of the decyloxy derivative. The bilayer  $S_{C_2}$  nature is suggested by the phase diagram (contact method) between 2B CN (R =  $C_{10}H_{21}O$ ) and to standard compound,  $DB_{10}ONO_2$  (Fig. 6). In addition three layering reflection orders are visible in the X-ray patterns of this phase (R =  $C_{13}H_{27}O$ ) with d  $\simeq$  51 Å and the experimental tilt angle is large ( $\theta$  > 30°) in agreement with the calculation of  $\theta$  considering the expected bilayered  $S_{C_2}$  arrangement with d  $\simeq$  2 $\ell$  cos  $\ell$  ( $\ell$  obtained from SASM stereomodel with the completely stretched conformation (2B CN, R =  $C_{13}H_{27}O-\ell$   $\ell$   $\simeq$  35 Å). The higher temperature  $S_A$  phase is a partially bilayer  $S_{Ad}$  phase with d  $\simeq$  53 Å.

\* Series 2A NO<sub>2</sub> (Table VII) and series 2B NO<sub>2</sub> (Table VIII). All eight compounds in this two series only exhibit smectic A and N phases. The N<sub>re</sub> and S<sub>C</sub> phases are not observed.

Conclusion for the family 2. In this family 2, only cyano polar end group gives:

- the reentrant phenomenon with I N  $S_A$   $N_{re}$   $S_{A_{re}}$  sequence.

| 7   | 'ABL | E VI | Tr               | ansit    | ion        | tem   | era | ture | s Q | f comp            | oun <u>ds</u> | of 2 | 2B CN |   |
|-----|------|------|------------------|----------|------------|-------|-----|------|-----|-------------------|---------------|------|-------|---|
|     |      |      | <sup>!</sup> 2n+ |          | $\bigcirc$ | >- CF | I = | и -{ | 0   | <b>&gt;</b> - oco | < <u>0</u>    | )- ( | CN    |   |
| n   | K    |      | Sca              | <u>.</u> | Sc         |       | S   | ١    | Nre | SA                |               | N    |       | I |
| 4   | -    | 141  | -                |          | -          |       | (.  | 136) | -   | -                 |               | . >  | 281   |   |
| 5   | -    | 130  | -                |          | -          |       | -   | 155  | _   | -                 |               | . >  | 281   | - |
| 6   | -    | 135  | -                |          | -          |       | -   | 156  | -   | -                 |               |      | 281   |   |
| 7   | •    | 131  | -                |          | -          |       | -   | 155  | -   | -                 |               | -    | 269   | - |
| 8   | -    | 119  | -                |          | -          |       | -   | 147  | -   | -                 |               | •    | 266   | - |
| 9   | -    | 116  | -                |          | -          |       | -   | 123  |     | 126 .             | 234           | •    | 257   |   |
| 10  | -    | 120  | (.               | 106)     | (_         | 112)  | -   |      | -   |                   | 241           |      | 249   |   |
| 1.1 | -    | 112  | ( -              | 102)     | -          |       | -   |      | -   |                   | 237           |      | 244   |   |
| 12  |      | 117  | (.               | 113)     | -          |       | -   |      | -   |                   | 242           | -    |       |   |
| 13  |      | 112  | (.               | 110)     | -          |       | -   |      | -   |                   | 234           | -    |       | _ |

TABLE VII Transition temperatures of compounds of 
$${}^{2}A \ NO_{2}$$
  $C_{n}H_{2n+1}O \longrightarrow O \longrightarrow COO \longrightarrow O \longrightarrow N = CH \longrightarrow O \longrightarrow NO_{2}$   $N = CH \longrightarrow O \longrightarrow O \longrightarrow NO_{2}$   $N = CH \longrightarrow O \longrightarrow NO_{2}$   $N =$ 

| TABLI | E VIII                        | Transition | temperat | ures       | of compoun | ds of 21     | NO <sub>2</sub> |
|-------|-------------------------------|------------|----------|------------|------------|--------------|-----------------|
|       | C <sub>n</sub> H <sub>2</sub> | n+10 -{0}- | CH = N   | <b>√</b> 0 | > oco -{   | 0 \range no. | 2               |
| n     | K                             |            | $s_{A}$  |            | N          |              | Ι               |
| 7     | -                             | 125        | •        | 223        | •          | 259          |                 |
| 8     |                               | 123        | •        | 240        |            | 254          | •               |
| 9     |                               | 124        |          | 247        | •          | 250          |                 |
| 10    | -                             | 117        | -        | 248        | -          |              |                 |

- the reentrant sequence I N  $\rm S_A$   $\rm S_C$   $\rm N_{re}$   $\rm S_A$  in a mixture I N  $\rm S_A$   $\rm S_C$   $\rm S_{C2}$  .
- 3. FAMILY  $\frac{1}{3}$ : The longitudinal dipolar moments of X and Y are antiparallel with that of CN or NO<sub>2</sub> group. The four corresponding series are :

3A CN : 
$$R \longrightarrow 0 \longrightarrow 0$$
CO  $\longrightarrow 0 \longrightarrow N = CH \longrightarrow 0 \longrightarrow 0$ CN

3A  $NO_2$  :  $R \longrightarrow 0 \longrightarrow 0$ CO  $\longrightarrow N = CH \longrightarrow 0 \longrightarrow 0$ CN

3B CN :  $R \longrightarrow 0 \longrightarrow N = CH \longrightarrow 0 \longrightarrow 0$ CO  $\longrightarrow 0$ CN

3B  $NO_2$  :  $R \longrightarrow 0 \longrightarrow N = CH \longrightarrow 0 \longrightarrow 0$ CO  $\longrightarrow 0$ CN

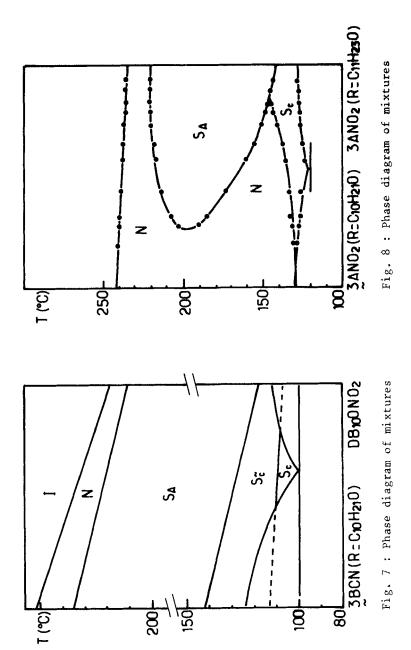
\* Series 3A CN (Table IX). This is the second series after the dibenzoate  $^{13}$  one to present the bilayered smectic A phase ( $S_{A_2}$ ). The two first compounds ( $R = C_6H_{13}O$ - and  $C_7H_{15}O$ -) exhibit monolayered smectic A ( $S_{A_1}$ ) and nematic phases. The octyloxy derivative in addition to these two phases, probably displays another antiphase  $S_A^{\sim}$ . The nonyloxy and decyloxy derivatives present the sequence :

This sequence is the same observed with the compound  $C_8H_{17}$ —0 — 0C0 —0C0 —0 NO $_2^{14}$  and these phases were respectively miscible.

The derivatives of this series do not exhibit the reentrant phanomenon in pure compounds as observed in the other cyano series.

\* Series 3B  $\rm CN^{15}$  (Table X). Ten derivatives were synthesized with R =  $\rm C_4^2H_9^0 \rightarrow \rm C_{12}H_{25}^2O$  and  $\rm C_{14}H_{29}^2O$ . The reentrant phenomenon was also not observed in pure compounds which exhibit the novel biaxial  $\rm S_C^\circ$  and  $\rm S_{C_2}$  phases. These two phases have been identified by the miscibility method with the same se-

| TA | BLE | IX T                           | ransi            | t <u>io</u> n te | mperat <u>ur</u> |                |       |              | of 3A | CN |
|----|-----|--------------------------------|------------------|------------------|------------------|----------------|-------|--------------|-------|----|
|    |     | C <sub>n</sub> H <sub>2n</sub> | +10 <del>~</del> | ( 0 )-           | oco -{ o         | 1              | = CH  | <b>√</b> ∘ ) | >- CN |    |
| n  | Κ   |                                | s <sub>A2</sub>  | SÃ               | s <sub>c</sub>   | s <sub>A</sub> |       | N            |       | I  |
| 6  |     | 120                            | -                | -                | -                | -              | 147.5 | •            | 277   | •  |
| 7  |     | 114                            | -                | -                | -                |                | 149   | •            | 270   |    |
| 8  | -   | 113                            | -                | . 13             | 2 -              | •              | 149   | -            | 266   |    |
| 9  |     | 116                            | . 13             | 7 -              | . 144            | •              | 163   | -            | 251   | -  |
| 10 | _   | 113                            | . 13             | 8 -              | _ 141            | _              | 210   | _            | 248   |    |


TABLE X Transition temperatures of compounds of 3B CN  $C_nH_{2n+1}O \leftarrow O \rightarrow N = CH \leftarrow O$ 0 >- CN > oco ≺  $\mathsf{s}_{\mathsf{c}_2}$  $s_{c}^{\sim}$  $\mathbf{s}_{\mathbf{A}}$ N Ι Κ 179 128 296 122.5 287 5 181 6 120 181.5 279 ) 114 (. 178 271 7 (. 119) 8 122 172 262 . . 154 257 9 125 212 (. 114) . 142 10 124 236 252 ( 125 . 131 239 246 11 126 . 129 240.5 242 12 124 . 131 238 14 125

| TA | ABLE | XI Tra                           | ansit <u>ion</u> to |          |           |            | of 3A N           | 0, |
|----|------|----------------------------------|---------------------|----------|-----------|------------|-------------------|----|
|    |      | C <sub>n</sub> H <sub>2n</sub> - | +0 <u> </u>         | 000 -{ 0 | ) - N =   | СН - ( 0 ) | ≻ no <sub>2</sub> | -  |
| n  | K    |                                  | s <sub>c1</sub>     | SA1      | $s_{A_d}$ | N          |                   | I  |
| 8  | -    | 138                              | -                   | (. 128)  | -         |            | 253               | -  |
| 9  |      | 134                              | (. 129)             | -        | -         | -          | 244               |    |
| 10 |      | 130                              | . 131               | -        | -         | -          | 242               |    |
| 11 |      | 128                              | . 142               | -        | -         | 221 .      | 236               |    |
| 12 | -    | 128                              | . 136               | -        |           | 224 .      | 232               |    |

quence of DB<sub>10</sub>ONO<sub>2</sub> (Fig. 7) and by X-ray analysis (for the S<sub>C2</sub>, d  $\simeq$  56 Å and  $\ell$  = 30 Å). We must point out that the S<sub>C</sub> phase presents a maximum stability temperature with the nonyloxy derivative.

- \* Series 3A NO<sub>2</sub> (Table XI). This is the first polar series which probably exhibits the  $S_{C_1}$  phase. Its comportement is similar to the  $S_{{
  m A}_1}$  one. It presents a temperature of maximum stability with the undecyloxy derivative. An interesting fact in this series is the competition between  $\mathbf{S}_{A_1}$  and  $\mathbf{S}_{C_1}$ phases. The octyloxy derivative shows nematic and metastable SA1 phases while the nonyloxy and decyloxy derivatives present nematic and  $S_{C_1}$  phases. From the undecyloxy derivative the partially bilayered  $\boldsymbol{S}_{\mbox{\sc A}_{\mbox{\sc d}}}$  phase appears. The mixtures of two homologues ( $C_{10}H_{21}O$ - and  $C_{11}H_{23}O$ -) show the enantiotropic reentrant sequence K  $S_{\mbox{\scriptsize C}}$  N  $_{\mbox{\scriptsize Te}}$   $S_{\mbox{\scriptsize A}}$  N I and a new triple point N<sub>re</sub>, S<sub>A</sub>, S<sub>C</sub><sup>2,16,17</sup> (Fig. 8). X-ray investigations 17 were performed with the pure undecyloxy derivative. We find in the high temperature SA phase that the layer spacing d is somewhat larger than the molecular length  $\ell$  ( $\frac{d}{d} \simeq 1.1 - 1.2$ ). This layer spacing decreases as the temperature decreases and at  $\mathbf{S}_{A}-\mathbf{S}_{C}$  phase transition the ratio  $\frac{d}{\sigma}$ is close to 1 (this ratio is equal to 0.96 in the  $S_{C1}$ phase when the temperature is 130°C). The same result was obtained with the reentrant mixtures.
- \* Series  $^{3B}$  NO $_2$  (Table XII). Ten compounds of this series were synthesized (n = 4  $\rightarrow$  12, 14) and they show S $_A$  and N phases or only S $_A$  phase. No reentrant phenomenon or no novel phase was found.

Conclusion for the family 3. This family leads as the dibenzoate series (DB NO<sub>2</sub>) to the new mesophases  $S_{A}^{\sim}$ ,  $S_{C}^{\sim}$  and shows the nitro end group is in this case more favourable to reen-



| TABL | EXII      | Transition to                             | emperat | ures | of compour | ids of 3E           | NO <sub>2</sub> |
|------|-----------|-------------------------------------------|---------|------|------------|---------------------|-----------------|
|      | $C_n^H_2$ | $_{n+1}$ 0 $\leftarrow$ 0 $\rightarrow$ 1 | N = CH  |      | }- oco -{  | 0 > NO <sub>2</sub> | :               |
| n    | Κ         |                                           | SA      |      | N          |                     | I               |
| 4    |           | 140                                       | •       | 154  |            | 281                 | -               |
| 5    |           | 123                                       |         | 165  | -          | 267                 | -               |
| 6    |           | 124.5                                     |         | 173  | •          | 263                 |                 |
| 7    |           | 114                                       |         | 180  | •          | 254                 | •               |
| 8    | -         | 121                                       |         | 196  | •          | 252                 |                 |
| 9    |           | 109                                       | •       | 227  |            | 246                 |                 |
| 10   |           | 112                                       |         | 235  | •          | 242                 |                 |
| 11   |           | 110                                       | •       | 239  | -          | 240                 |                 |
| 12   | •         | 112                                       |         | 237  | -          |                     | -               |
| 14   | -         | 114                                       |         | 234  | -          |                     |                 |

|   | TABLE | XIV T         | ransi <u>tio</u> n | tempera  | atur <u>es</u> of | compour | ids of 4B | CN |
|---|-------|---------------|--------------------|----------|-------------------|---------|-----------|----|
|   |       | $C_n^H_{2n+}$ | 10 -{ 0}           | - N = CI | - (0)-            | coo -{  | o > cn    |    |
|   | n     | K             |                    | $s_A$    |                   | N       |           | 1  |
|   | 7     |               | 134                | -        |                   |         | 262       | -  |
|   | 8     | •             | 133                | -        |                   | •       | 255       |    |
|   | 9     | •             | 134                | •        | 212               |         | 248       | -  |
| 1 | 0     |               | 127                |          | 229               |         | 243       |    |

Downloaded by [Tomsk State University of Control Systems and Radio] at 13:13 20 February 2013

MOLECULAR ASPECT AND POLYMORPHISM IN POLAR MESOGENS

trant phenomenon than cyano end group (in the families 1  $\stackrel{\sim}{}$  and 2).

4. FAMILY 4. The longitudinal dipolar moments of Y and CN or NO<sub>2</sub> are in the same sense while that of X is antiparallel. Four series are obtained:

\* Series 4A CN (Table XIII). As 3A CN and 3B CN, this series presents the smectic phase made of ribbons  $S_{C}^{\sim}$  and the bilayered smectic C ( $S_{C_2}$ ). The more interesting sequence is :

K 
$$S_{C_2}$$
  $S_C^{\sim}$   $S_C$   $S_A$  N I

The reentrant phenomenon was not observed in pure compounds.

- \* Series 4B CN (Table XIV). The two first compounds ( ${\rm C_7H_{15}O}$  and  ${\rm C_8H_{17}O}$ ) only show nematic phases while the nonyloxy derivative presents smectic  ${\rm S_A}$  and N phases. This same behavior was observed with reentrant series. As a matter of fact the mixtures of the octyloxy and nonyloxy derivatives exhibit a reentrant nematic phase.
- \* Series  $\overset{4A}{\sim}$  NO<sub>2</sub> (Table XV) and  $\overset{4B}{\sim}$  NO<sub>2</sub> (Table XVI). These two series exhibit the reentrant phenomenon in pure compounds. The observed sequence is:

| TA | ABLE X | W Trans               | sit <u>ion</u> ter | mperat <u>ure</u> | s of  | compou | ınds | of 4A              | NO <sub>2</sub> |
|----|--------|-----------------------|--------------------|-------------------|-------|--------|------|--------------------|-----------------|
|    | C      | $2^{H}_{n}$ $2^{n+1}$ | 0 - 0              |                   | ∕− СН | = N -  | 0    | >- NO <sub>2</sub> | ?               |
| n  | Κ      |                       | N <sub>re</sub>    | $s_{c}$           | $s_A$ |        | N    |                    | I               |
| 7  | •      | 101                   | -                  | -                 | -     |        |      | 244                | -               |
| 8  |        | 87                    | (. 64)             | (. 67)            |       | 186    |      | 241                |                 |
| 9  | •      | 89                    | -                  | (. 62)            |       | 218    | •    | 237                |                 |
| 10 |        | 89                    | _                  | _                 |       | 227    |      | 234                | -               |

TABLE XVI Transition temperatures of compounds of 4B NO 
$$_2$$
  $_{C_1H_{2n+1}O}$   $\stackrel{\frown}{O}$   $\stackrel{\frown}{N}$   $_{Pe}$   $\stackrel{\frown}{S_C}$   $\stackrel{\frown}{S_A}$   $\stackrel{\frown}{N}$   $\stackrel{\frown}{N}$   $\stackrel{\frown}{N}$   $\stackrel{\frown}{S_C}$   $\stackrel{\frown}{S_A}$   $\stackrel{\frown}{N}$   $\stackrel{\frown}{N}$ 

Conclusion for the family 4. As family 3, the cyano compounds present the new  $S_C^{\sim}$  and  $S_{C_2}^{\sim}$  phases while the nitro compounds show reentrant nematic phases.

#### CONCLUSION

With different longitudinal dipolar moments of X and Y we have studied the influence of the polar end group - CN or NO2 on the reentrant phenomenon and the appearance of the new phases  $S_A^{\sim}$ ,  $S_C^{\sim}$ , we must point out some following interesting features.

# \* Reentrant phenomenon

In the families 1 and 2 in which the longitudinal dipolar moments of X and polar end group are in the same sense:

$$R \xrightarrow{Q} \overrightarrow{X} \xrightarrow{Q} \overrightarrow{Y} \xrightarrow{Q} Q \xrightarrow{CN} \begin{cases} \overrightarrow{CN} \\ NO_2 \end{cases}$$

the cyano group is very more favourable to reentrant phenomenon than the nitro one.

A quite contrary result was obtained with families 3 and 4 in which the longitudinal polar moments of X and cyano and nitro are antiparallel : the reentrant phenomenon only exists in nitro pure compounds :

$$\begin{array}{c|c}
\hline
R & O & \overleftarrow{X} & O & \overleftarrow{Y} & O
\end{array}$$

An exciting example was recently reported with the socalled DB9 ONO2 which has the same general formula type :

K 109( $S_{C_2}$ )  $S_C^{\sim}$  118  $S_{A_1}$  124  $N_{re}$  127  $S_{A_d}$  138  $N_{re}$  156  $S_A$  195 N 224 I

The other reentrant sequences are :

K 
$$S_A$$
  $N_{re}$   $S_A$   $N$   $I$ 

\* Novel phases SÃ, SC

Up to now these novel phases  $S_A^\sim$  and  $S_C^\sim$  were only found in the families 3 (all two series) and 4 (only one series). In these families, the different smectic A and C phases are also present, for example :

$$egin{array}{lll} s_{A_2} & s_{A_1} & s_{A_d} \\ s_{C_2} & s_{C_1} & s_{C_d} \end{array}$$

\* Transition Sc - Sc

Only one compound (in the series 2B CN) offers a directly transition  $S_{C_2}$  -  $S_C$  with the sequence :

K 
$$S_{C_2}$$
  $S_C$   $S_A$  N I

Between the  $\mathrm{S}_{\mathrm{C}_2}$  and  $\mathrm{S}_{\mathrm{C}}$  phases, another tilted phase can appear with the sequence :

in a pure compound of 4A CN series.

Now, we are able to foresee the three benzene ring compound architecture which displays the expected properties.

- 1. To obtain the reentrant phenomenon
  - with cyano end group, the longitudinal dipolar moment of X must be in the same sense.
  - with <u>nitro</u> end group, the longitudinal dipolar moment of X must be in opposite sense.
- 2. To obtain new phases  $S_{\widetilde{A}}^{\sim}$  and  $S_{\widetilde{C}}^{\sim}$ , with both cyano and nitro end groups, the longitudinal dipolar moment of X must be in opposite sense.

### REFERENCES

- 1. Nguyen Huu Tinh, Mol. Cryst. Liq. Cryst. 91, 285 (1983)
- 2. Nguyen Huu Tinh, J. Chim. Phys. 80, 83 (1983)

- 3. Nguyen Huu Tinh, F. Hardouin and C. Destrade, <u>J. Phys.</u> (Paris) 43, 1127 (1982).
- W. Weissflog, G. Pelzl, A. Wiegeleben and D. Demus, Mol. Cryst. Liq. Cryst. Lett. 56, 295 (1980).
- Nguyen Huu Tinh, A. Zann, J.C. Dubois and J. Billard, Mol. Cryst. Liq. Cryst. Lett. 56, 323 (1980).
- 6. Nguyen Huu Tinh, F. Hardouin, C. Destrade and A.M.
- Levelut, J. Phys. (Paris) Lett. 43, L33 (1982).
  W. Weissflog. G. Pelzl and D. Demus, Mol. Cryst. Liq. Cryst. 76, 261 (1981).
- 8. a) F. Hardouin, G. Sigaud, M.F. Achars and H. Gasparoux, Phys. Lett. 71A, 317 (1979).
  - b) Nguyen Huu Tinh, G. Sigaud, M.F. Achard, H. Gasparoux and F. Hardouin, Pergamon Press, Oxford Akademiai Kiado, Budapest, 1, 147 (1980).
- G. Sigaud, Thèse d'Etat, Université Bordeaux N° 609 (1979).
- D. Johnson, D. Allender, R. Dehoff, C. Maze, E. Oppenheim and R. Reynolds, Phys. Rev. <u>B16</u>, 470 (1977).
- 11. G. Sigaud, Y. Guichard, F. Hardouin and L.G. Benguigui, Phys. Rev. A26, 3041 (1982).
- 12. Nguyen Huu Tinh, F. Hardouin, C. Destrade and H. Gasparoux J. Phys. (Paris) Lettres, 43, L739 (1982).
- 13. F. Hardouin, A.M. Levelut, J.J. Benattar and G. Sigaud, Solid. State Communications, 33, 337 (1980).
- 14. F. Hardouin, Nguyen Huu Tinh, M.F. Achard and A.M. Levelut, J. Phys. (Paris) Lett. 43, L327 (1982).
- Nguyen Huu Tinh, F. Hardouin and C. Destrade, Mol. Cryst. Liq. Cryst. Lett. 82, 247 (1982).
- 16. Nguyen Huu Tinh, J. Malthète, C. Destrade and H. Gasparoux, 9e International Conf. on Liq. Cryst. Bangalore, India, December 6, 1982.
- 17. G. Sigaud, Y. Guichard, Nguyen Huu Tinh, F. Hardouin and J. Malthète, Mol. Cryst. Liq. Cryst. Lett. under press.